Learning Progressive Modality-Shared Transformers for Effective Visible-Infrared Person Re-identification

نویسندگان

چکیده

Visible-Infrared Person Re-Identification (VI-ReID) is a challenging retrieval task under complex modality changes. Existing methods usually focus on extracting discriminative visual features while ignoring the reliability and commonality of between different modalities. In this paper, we propose novel deep learning framework named Progressive Modality-shared Transformer (PMT) for effective VI-ReID. To reduce negative effect gaps, first take gray-scale images as an auxiliary progressive strategy. Then, Modality-Shared Enhancement Loss (MSEL) to guide model explore more reliable identity information from modality-shared features. Finally, cope with problem large intra-class differences small inter-class differences, Discriminative Center (DCL) combined MSEL further improve discrimination Extensive experiments SYSU-MM01 RegDB datasets show that our proposed performs better than most state-of-the-art methods. For reproduction, release source code at https://github.com/hulu88/PMT.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementary Material for “RGB-Infrared Cross-Modality Person Re-Identification”

This supplementary material accompanies the paper “RGB-Infrared Cross-Modality Person Re-Identification”. It includes more details of Section 4, as well as extra evaluations of our proposed deep zero-padding method. 1. Details of Counting Domain-Specific Nodes In the third paragraph of Section 4.2 in the main manuscript, we quantify the number of domain-specific nodes in the trained network in ...

متن کامل

Science Deep learning for person re - identification

Person re-identification is the task of ranking a gallery of automatically detected images of persons using a set of query images. This is challenging due to the different poses, viewpoints, occlusions, camera configurations, image distortions, lighting conditions, image resolutions and imperfect detections, which all affects a person re-identification system’s performance. Recently deeply lear...

متن کامل

Learning Appearance Transfer for Person Re-identification

In this chapter we review methods that model the transfer a person’s appearance undergoes when passing between two cameras with non-overlapping fields of view. Whereas many recent studies deal with re-identifying a person at any new location and search for universal signatures and metrics, here we focus on solutions for the natural setup of surveillance systems in which the cameras are specific...

متن کامل

Mahalanobis Distance Learning for Person Re-identification

Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning...

متن کامل

Deep Transfer Learning for Person Re-identification

Person re-identification (Re-ID) poses a unique challenge to deep learning: how to learn a deep model with millions of parameters on a small training set of few or no labels. In this paper, a number of deep transfer learning models are proposed to address the data sparsity problem. First, a deep network architecture is designed which differs from existing deep Re-ID models in that (a) it is mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i2.25273